B.E. SEM – 3 (MECH/AUTO/MME)

Question Bank

Applied Maths – II

Q.1	Find the Fourier Series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.
Q.2	Expand $f(x) = x \sin x$ as a Fourier series in the interval $0 < x < 2\pi$.
Q.3	Find the Fourier series of $f(x) = 2x - x^2$ in the interval (0,3). Hence deduce that
,	2
	$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}.$
Q.4	Find the Fourier series of the function $f(x) = \begin{cases} x^2 & 0 \le x \le \pi \\ -x^2 & -\pi \le x \le 0 \end{cases}$.
Q.5	
	Find the Fourier series of the function $f(x) = \begin{cases} \pi x & 0 < x < 1 \\ 0 & x = 1 \end{cases}$. Hence show that $\pi(x-2) & 1 < x < 2$
	$\left(\pi(x-2) 1 < x < 2\right)$
	$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$
Q.6	Find the Fourier series of $f(x) = x^2$ in the interval $0 < x < a$, $f(x+a) = f(x)$.
Q.7	If $f(x) = \cos x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$,
	$f(x+2\pi)=f(x).$
Q.8	For the function $f(x)$ defined by $f(x) = x $, in the interval $(-\pi, \pi)$. Obtain the
	Fourier series. Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$.
Q.9	Given $f(x) = \begin{cases} -x+1 & -\pi \le x \le 0 \\ x+1 & 0 \le x \le \pi \end{cases}$. Is the function even of odd? Find the Fourier
	series for $f(x)$ and deduce the value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
Q.10	Find the Fourier series of the periodic function $f(x)$; $f(x) = -k$ when $-\pi < x < 0$ and $f(x) = k$ when $0 < x < \pi$, and $f(x + 2\pi) = f(x)$.
Q.11	Half range sine and cosine series of $f(x) = x(\pi - x)$ in $(0, \pi)$
Q.12	Find the Fourier series for the function $f(x) = \begin{cases} \pi x, 0 < x < 1 \\ \pi (x-2), 1 < x < 2 \end{cases}$
Q.13	Find the Fourier series for f(x) defined by f(x) = $x + \frac{x^2}{4}$ when $-\pi < x < \pi$ and
	$f(x + 2\pi) = f(x)$ and hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$
Q.14	Find the Fourier series for the function $f(x) = \begin{cases} x; 0 < x < 1 \\ 0; 1 < x < 2 \end{cases}$.

GUJARAT UNIVERSITY B.E. SEM – 3 (MECH/AUTO/MME) Question Bank

Applied Maths – II

·	estion is of equal Marks (10 Marks)
Q.15	If $f(x) = x$ in $0 < x < \frac{\pi}{2}$
	$= \pi - x \text{ in } \frac{\pi}{2} < x < \frac{3\pi}{2}$
	$= x - 2\pi \text{ in } \frac{3\pi}{2} < x < 2\pi$
	Prove that $f(x) = \frac{4}{\pi} \left\{ \frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \right\}$
Q.16	If $f(x) = \frac{x}{l}$ when $0 < x < l$
	$= \frac{2l - x}{l} \qquad \text{when } l < x < 2l$
	Prove that f(x) $\frac{1}{2} - \frac{4}{\pi^2} \left(\frac{1}{I^2} \cos \frac{\pi x}{l} + \frac{1}{3^2} \cos \frac{3\pi x}{l} + \frac{1}{5^2} \cos \frac{5\pi x}{l} + \dots \right)$
Q.17	When x lies between $\pm\pi$ and p is not an integer, prove that
	$\sin px = \frac{2}{\pi} \sin p\pi \left(\frac{\sin x}{1^2 - p^2} - \frac{2\sin 2x}{2^2 - p^2} + \frac{3\sin 3x}{3^2 - p^2} - \dots \right)$
Q.18	Find the Fourier series for the function $f(x) = e^{ax}$ in $(-l, l)$
Q.19	Half range sine and cosine series of $f(x) = 2x - 1$ in $(0,1)$
Q.20	Half range sine and cosine series of x^2 in $(0,\pi)$
Q.21	Find Half range sine and cosine series for $f(x) = (x-1)^2$ in $(0,1)$
Q.22	Evaluate: $L\{\sin 2t \cos 3t\}$, $L\{e^{-3t}(\cos 4t + \sin 2t)\}$
Q.23	Evaluate: $L\{\sin^2 2t\}$, $L\{e^{-2t}\cos 3t\}$

B.E. SEM – 3 (MECH/AUTO/MME)

Question Bank

Applied Maths – II

Q.24	Evaluate: $L\left\{\frac{\sin 2t - \sin 3t}{t}\right\}, L\left\{t\int_{0}^{t} e^{-4t} \sin 3t dt\right\}$
Q.25	Evaluate: $L^{-1}\left\{\log\left(\frac{s+1}{s-1}\right)\right\}, L^{-1}\left\{\frac{s^2+s+2}{s^5}\right\}$
Q.26	Evaluate: $L^{-1} \left\{ \cot^{-1} \frac{s}{a} \right\}, L^{-1} \left\{ \frac{s-1}{(s-1)^2 + 4} \right\}$
Q.27	Evaluate: $L^{-1} \left\{ \log \left(\frac{s+2}{s+3} \right) \right\}, L^{-1} \left\{ \frac{s+2}{\left(s^2 + 4s + 5 \right)^2} \right\}$
Q.28	Evaluate: $L^{-1} \left\{ \frac{1+2s}{(s+2)^2 (s-1)^2} \right\}, L^{-1} \left\{ \frac{s^2+s+3}{s^6} \right\}$
Q.29	Evaluate: $L^{-1} \left\{ \frac{(s+1)^2}{s^3} \right\}, L^{-1} \left\{ \tan^{-1} \frac{s}{a} \right\}$
Q.30	Find the Laplace Transform of f(t), where
	(i) $f(t) = t$ if $0 < t < \frac{a}{2}$, $f(t+a) = f(t)$
	$= a - t if \frac{a}{2} < t < a$
Q.31	Find the Laplace transform of the function
	$f(t) = \begin{cases} \sin \omega t; 0 < t < \frac{\pi}{\omega} \\ 0; \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$ $f(t) = f(t + \frac{2\pi}{\omega})$
Q.32	Use convolution theorem to find the Laplace Inverse Transform of
	(i) $\frac{sa}{(s^2 - a^2)^2}$ (ii) $\frac{s - 2}{s(s - 4s - 13)}$
Q.33	Use convolution theorem to find the Laplace Inverse Transform of

B.E. SEM – 3 (MECH/AUTO/MME)

Question Bank

Applied Maths – II

Each qu	Each question is of equal Marks (10 Marks)	
	(i) $\frac{s^2}{(s^2+a^2)(s^2-b^2)}$ (ii) $\frac{1}{s^2(s-2)}$	
Q.34	Find the value of the integral using Laplace Transform technique.	
	(i) $\int_{0}^{\infty} t \ e^{-2t} \cos t dt \qquad \text{(ii) } \int_{0}^{t} e^{-t} \ \frac{\sin t}{t} dt$	
Q.35	Solve the initial value problem $y'' + 5y' + 2y = e^{-2t}$, $y(0) = 1$, $y'(0) = 1$, Using Laplace	
	transformation.	
Q.36	Solve the following Differential Equations using Laplace Transform technique.	
	$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t \text{with} x = 2 \text{and} \frac{dx}{dt} = -1 \text{ at } t = 0$	
Q.37	Solve the following Differential Equations using Laplace Transform technique.	
	$\left[\frac{d^2y}{dx^2} + y = 1 with y(0) = 1 and y\left[\frac{\pi}{2}\right] = 0$	
Q.38	Solve the following equations :	
	(a) $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (b) $(D^2 + D) y = x^2 + 2x + 4$	
Q.39	Solve the following equations :	
	(a) $(D^2 + 1) y = x^2 \cos x$ (b) $(D^2 + 1) y = e^{2x} + \cosh 2x + x^3$	
Q.40	Solve the following equations :	
	(a) $(D^4 + 2D^2 + 1)y = x^2 \cos^2 x$ (b) $(D^2 + 2)y = e^{-2x} + \cos 3x + x^2$	
Q.41	Solve the following equations :	
	(a) $(D^2 + 2D + 1) y = x e^x sinx$ (b) $(D^2 - 9) y = e^{3x} cos 2x$	
	$(a) (D + 2D + 1) y - x \in SHIX$ $(b) (D - 3) y - e = COS2X$	
Q.42	Solve the following equations :	
	(a) $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (b) $(D^3 + 8) y = x^4 + 2x + 1$	
Q.43	Solve the following equations :	

Question Bank Applied Maths – II

Zacii qa	(a) $(D^2 - 1) y = x \sin 3x + \cos x$ (b) $(D^2 - 4D + 4) y = 2e^x + \cos 2x + x^3$
Q.44	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$.
Q.45	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = ((\log x) \sin(\log x) + 1)/x$
Q.46	Solve: $(3x+2)\frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$.
Q.47	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$.
Q.48	Solve: $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x$.
Q.49	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} + y = \sec x$.
Q.50	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} + y = \tan x$.
Q.51	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$
Q.52	The charge q on a plate of a condenser C is given by $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = E \sin pt$ the
	circuit is tuned to resonance so that $p^2 = \frac{1}{LC}$ if initially the current i and charge q
	be zero show that for small value of $\frac{R}{L}$, the current in the circuit at time t is given by
	$\left(\frac{Et}{2L}\right)\sin pt$.
Q.53	Solve the following simultaneous equations: $Dx + y = \sin t$, where $D = \frac{d}{dt}$

B.E. SEM – 3 (MECH/AUTO/MME)

Question Bank

Applied Maths – II

	given that when $t = 0$, $x = 1$ and $y = 0$.
Q.54	Solve the following simultaneous equations: $Dx + y = e^{t}$; where $D = \frac{d}{dt}$
0.55	
Q.55	Form the partial differential equation of following:
	(a) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (b) $z = f(x+ct) + g(x-ct)$
Q.56	Form the partial differential equation of following:
	(a) $2z = a^2x^2 + b^2y^2$ (b) $z = x + y + f(xy)$
Q.57	Form the partial differential equation of following:
	(a) $z = (x^2 + a)(y^2 + b)$ (b) $F(xy+z^2, x + y + z) = 0$
Q.58	Solve following partial differential equations :
	(a) $x(y^2-z^2)p + y(z^2-x^2)q = z(x^2-y^2)$ (b) $x(y-z)p + y(z-x)q = z(x-y)$
Q.59	Solve following partial differential equations :
	(a) $py + qx = pq$ (b) $z = px + qy + 2\sqrt{pq}$
Q.60	Solve following partial differential equations :
	(a) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos y + xy$ (b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \cos x \cos 2y$
Q.61	Solve following partial differential equations :
	(a) $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+4y}$ (b) $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^3 + e^{x+2y}$
Q.62	(a) Solve: $\frac{\partial^2 z}{\partial x \partial y} = e^{-y} \cos x$, given that $z = 0$ when $y = 0$ and $\frac{\partial z}{\partial y} = 0$ when $x = 0$

Question Bank Applied Maths – II

Lacii qu	estion is of equal Marks (10 Marks)
	(b) Solve: $\frac{\partial^2 z}{\partial x^2} = z$ given that $z = e^y$ and $\frac{\partial z}{\partial x} = e^{-y}$ when $x = 0$
Q.63	Solve: $\frac{\partial z}{\partial x} = 2\frac{\partial z}{\partial y} + z$ where z (x, 0) = 8 e ^{-5x} using method of separation of variables.
Q.64	Solve: $3 \frac{\partial z}{\partial x} + 2 \frac{\partial z}{\partial y} = 0$, where $z(x, 0) = 4 e^{-x}$ by using method of separation of variables.
Q.65	Solve: $\frac{\partial z}{\partial x} = 4 \frac{\partial z}{\partial y}$ where $z(0, y) = 8 e^{-3y}$ using method of separation of variables.
Q.66	Find the series solution of the differential equation $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + xy = 0$
Q.67	Solve the following equation in power series $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$
Q.68	Solve in series in differential equation $\frac{d^2y}{dx^2} + xy = 0$
Q.69	Solve in series in differential equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$ solve in series the differential equation $\frac{d^2y}{dx^2} + 4y = 0$
Q.70	solve in series the differential equation $\frac{d^2y}{dx^2} + 4y = 0$
Q.71	Attempt the following
	 Derive Cauchy –Riemann equations for complex function w = f(z) in polar form.
	2) Define harmonic function, Show that $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic and
0.72	determine its conjugate function.
Q.72	Attempt the following
	1) Derive Cauchy-Rieman equation for a complex function $\mathit{W} = f(z)$ In polar
	form .Hence deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$.
	2) If $w = u + iv$ represent the complex potential function for an electric field and $u = 3x^2y - y^3$, determine the function v .
Q.73	Attempt the following
	1) If f(z) is analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$

Question Bank Applied Maths – II

Each qu	estion is of equal Marks (10 Marks)
	2) Evaluate $\int_{0}^{1+i} (x^2 - iy) dz$ along the path $(i)y = x(ii)y = x^2$
Q.74	Attempt the following
	1) Find the image of infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$ also show the region graphically.
	Define line integral .Evaluate $\int_{0}^{3+i} z^2 dz$ along (i) the line $y = \frac{x}{3}$; (ii) the parabola $x = 3y^2$
Q.75	Attempt the following
	1) Define bilinear transformation, Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle onto the straight line $4u+3=0$
	2) State Cauchy integral theorem and Cauchy integral formula. Evaluate
Q.76	Attempt the following
	 Determine the analytic function whose real part is u = e^{-x} (x sin y - y cos x). Find the Bi-linear transformation, which maps the points z = -1, i, 1 into the points w = 1, i, -1.
Q.77	Attempt the following
	 Find the Bi-linear transformation which maps the points z = 1, i, -i into the Points w = 0,1,∞. Use Cauchy's integral formula to evaluate ∫_C (z+1)⁴ dz , where C is the circle
	z =2.
Q.78	Attempt the following
	1) Prove that $f(z) = e^{2z}$ is analytic every in the plane and find its derivative.
	2) Find the image of $ z-2i =2$ under the mapping $w=\frac{1}{z}$
Q.79	Attempt the following
	1) Evaluate $\int_{1-i}^{2+3i} (z^2+z)dz$ along the line joining the points $(1,-1)$ and $(2,3)$.

Question Bank

Applied Maths – II

Each qu	tion is of equal Marks (10 Marks)
	2) Evaluate $\oint_C \frac{2z+1}{z^2+z} dz$; where C is $ z = \frac{1}{2}$.
Q.80	Attempt the following
	1) If $w = u + iv$ represent the complex potential function for an electric field and $u = 3x^2y - y^3$, determine the function v .
	State the Residue theorem and evaluate $\iint_C \frac{2z+1}{(2z-1)^2} dz$, where <i>C</i> is the circle
	z =1.
Q.81	Attempt the following
	1) Prove that $f(z) = e^{2z}$ is analytic every in the plane and find its derivative.
	2) Expand $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.
Q.82	Attempt the following
	1) Evaluate $\int_{0}^{3+i} z^2 dz$ along (i) the line $y = \frac{x}{3}$ (ii) the parabola $x = 3y^2$
	2) Find the image of the upper half plane under the transformation $w = \frac{z}{i-z}$.
Q.83	Attempt the following
	1) Find the Bi-linear transformation which maps the points $z=1,i,-i$ into the Points $w=0,1,\infty$.
	2) Determine the analytic function whose real part is $y + e^x \cos y$.
Q.84	Attempt the following
	1) Evaluate $\int_C \frac{z^2+1}{z(2z+1)} dz$ where C is $ z =1$.
	2) Under the transformation $w = \frac{1}{z}$ find the image of $x^2 - y^2 = 1$.
Q.85	Attempt the following
	1) Find the analytic function whose imaginary part is $e^x \sin y$
	2) Under the transformation $w = \frac{1}{z}$ find the image of $ z - 2i = 2$.
Q.86	Attempt the following
	1) Evaluate $\int_C \frac{z^2+1}{z(2z+1)} dz$ where C is $ z =1$.

GUJARAT UNIVERSITY B.E. SEM – 3 (MECH/AUTO/MME) Question Bank Applied Maths – II

	2) Under the transformation, $w = \frac{1}{z}$ find the image of $x^2 - y^2 = 1$.
Q.87	Evaluate: (i) $\iint_{c} \frac{e^{2z}}{(z+1)^4} dz$; where $c: z = 4$
	(ii) $\iint_{c} \frac{e^{z}}{(z+1)^{4}(z-2)} dz$; where $c: z-1 =3$